Determination of Chemical State and External Magnetic Field Effect on the Energy Shifts and X-Ray Intensity Ratios of Yttrium and Its Compounds
نویسنده
چکیده
The term 'X-ray fluorescence analysis' (XRF) refers to the measurement of characteristic fluorescent emission resulting from the deexcitation of inner shell vacancies produced in the sample by means of a suitable source of radiation. For a particular energy (wavelength) of fluorescent light emitted by a sample, the number of photons per unit time (generally referred to as peak intensity or count rate) is related to the amount of that analyte in the sample. The counting rates for all detectable elements within a sample are usually calculated by counting, for a set amount of time, the number of photons that are detected for the various analytes' characteristic X-ray energy lines. It is important to note that these fluorescent lines are actually observed as peaks with a semi-Gaussian distribution because of the imperfect resolution of modern detector technology. Therefore, by determining the energy of the X-ray peaks in a sample’s spectrum, and by calculating the count rate of the various elemental peaks, it is possible to qualitatively establish the elemental composition of the samples and to quantitatively measure the concentration of these elements. XRF is an analytical method to determine the chemical composition of all kinds of materials. The materials can be in solid, liquid, powder, filtered or other form. XRF can also sometimes be used to determine the thickness and composition of layers and coatings. The method is fast, accurate and non-destructive, and usually requires only a minimum of sample preparation. Applications are very broad and include the metal, cement, oil, polymer, plastic and food industries, along with mining, mineralogy and geology, and environmental analysis is of water and waste materials. XRF is also a very useful analysis technique for research and pharmacy. For routine XRF analysis, two major approaches are distinguishable based on the type of detector used to measure the characteristic X-ray emission spectra. Wavelength dispersive X-ray fluorescence (WDXRF) analyses depend upon the use of diffracting crystal to determine the characteristic wavelength of the emitted X-rays. Energy dispersive X-ray fluorescence (EDXRF) employs detectors that directly measure the energy of the X-rays by collecting the ionization produced in suitable detecting medium.
منابع مشابه
Convective heat transfer enhancement of the Water-based magnetite nanofluids in the presence of a 3-D low-intensity magnetic field
In the current investigation, Fe3O4 water-based nanofluids were synthesized to examine the effect of an alternative 3-D external magnetic field on its thermal behavioral pattern. A solvothermal method was used to prepare the magnetite nanoparticles. To characterize the nanoparticles, the study employed transmission electron microscopy, X-ray diffraction, Fourier transform ...
متن کاملThe effect of magnetic field on the magnetic property of Agar/Fe3O4 nanocomposite
Agar/Fe3O4 nanocomposites were synthesized in the presence of an external magnetic field (~ 0.4 Tesla) and their characteristics were compared with the samples synthesized without considering the external magnetic field. In this study we used Fe2+ and Fe3+ for synthesizing Fe3O4 magnetic nanoparticles in the presence of agar as polymeric additive, by co-precipitation technique. Vibrating sample...
متن کاملConvective heat transfer enhancement of the Water-based magnetite nanofluids in the presence of a 3-D low-intensity magnetic field
In the current investigation, Fe3O4 water-based nanofluids were synthesized to examine the effect of an alternative 3-D external magnetic field on its thermal behavioral pattern. A solvothermal method was used to prepare the magnetite nanoparticles. To characterize the nanoparticles, the study employed transmission electron microscopy, X-ray diffraction, Fourier transform ...
متن کاملStudy of the effect of chemical reduction agent on the synthesis and structural properties of WO3-TeO2 and MoO3-TeO2 two-dimensional compounds.
Preparation of two-dimensional nanostructures of WTe2 and MoTe2 by chemical solution synthesis methods is of great importance. In different synthesis methods, different precursors and concentrations are used. In this paper, we used the chemical reduction reaction method from solution for our analysis. Binary compounds of WO3 - TeO2 and MoO3 - TeO2 were prepared in two processes with reduction a...
متن کاملPHASE STABILITY AND CONDUCTIVITY OF δ-Bi2O3 WITH MIXTURE OF YTTRIUM AND YTTERBIUM OXIDES
In this research Bi2O3 was doped with mixtures of 8, 10, 12 and 18 mol % of Y2O3 and Yb2O3 to stabilizing the δ-Bi2O3 phase using solid state reaction technique. Experimental samples were fabricated by isostatic pressing and sintering at 850 °C for 24 h. X-ray diffraction analysis detected cubic phase (δ-Bi2O3) as the sole stable crystalline phase in samples including 12 and 18 mol % of Y2O3 an...
متن کامل